
Darwinian Particle Swarm Optimization

Jason Tillett1, T.M. Rao2, Ferat Sahin3 and Raghuveer Rao3

1University of Rochester
Rochester, NY USA

2SUNY Brockport
Brockport, NY USA

3Rochester Institute of Technology
Rochester, NY USA

Abstract. Particle Swarm Optimization (PSO), an evolutionary algorithm for
optimization is extended to determine if natural selection, or survival-of-the-
fittest, can enhance the ability of the PSO algorithm to escape from local op-
tima. To simulate selection, many simultaneous, parallel PSO algorithms, each
one a swarm, operate on a test problem. Simple rules are developed to imple-
ment selection. The ability of this so-called Darwinian PSO to escape local op-
tima is evaluated by comparing a single swarm and a similar set of swarms, dif-
fering primarily in the absence of the selection mechanism, operating on the
same test problem. The selection process is shown to be capable of evolving the
best type of particle velocity control, which is a problem specific design choice
of the PSO algorithm.

1. Particle Swarm Optimization (PSO)

The PSO [1] approach utilizes a cooperative swarm of particles, where each particle
represents a candidate solution, to explore the space of possible solutions to an opti-
mization problem. Each particle is randomly or heuristically initialized and then al-
lowed to ‘fly’. At each step of the optimization, each particle is allowed to evaluate its
own fitness and the fitness of its neighboring particles. Each particle can keep track of
its own solution, which resulted in the best fitness, as well as see the candidate solu-
tion for the best performing particle in its neighborhood. At each optimization step,
indexed by t , each particle, indexed by i , adjusts its candidate solution (flies) ac-
cording to,

 (1) 1 2, ,(1) () () (

(1) () (1)
i i i p i i n

i i i

v t v t x x x x

x t x t v t

φ φ+ = + − + −

+ = + +

)i

Eqn. 1 may be interpreted as the ‘kinematic’ equation of motion for one of the par-

ticles (test solution) of the swarm. The variables in the dynamical system of Eqn. 1
are summarized in Table 1.

Table 1- List of variables used to evaluate the dynamical swarm response

iv The particle velocity.
ix The particle position (test solution).

t Time
1φ A uniform random variable usually distributed over [0,2].

2φ A uniform random variable usually distributed over [0,2].

,i px The particle’s position (previous) that resulted in the best fit-
ness so far.

,i nx The neighborhood position that resulted in the best fitness so
far.

Eqn. 1 can be interpreted as follows. Particles combine information from their pre-

vious best position and their neighborhood best position to maximize the probability
that they are moving toward a region of space that will result in a better fitness. The
uniformly distributed random variables, 1φ and 2φ are sampled for each , and di-
mension of the vector

i t

ix .

2. Darwinian Particle Swarm Optimization

A general problem with optimization algorithms is that of becoming trapped in a local
optimum. A particular algorithm may work well on one problem but may fail on an-
other problem. If an algorithm could be designed to adapt to the fitness function, ad-
justing itself to the fitness landscape, a more robust algorithm with wider applicabil-
ity, without a need for problem specific engineering would result. Strategies for
avoiding local optima include stretching of Parsopoulos[2] and other convexifica-
tion[3] strategies. Nature points to a way that may help circumvent local optima. We
propose a strategy based on natural selection in which, when a search tends to a local
optimum, the search in that area is simply discarded and another area is searched in-
stead. This is the type of search designed and analyzed in this paper.

In a typical implementation of PSO, a single swarm of test solutions is utilized. To
implement natural selection with a single swarm, the algorithm must detect when
stagnation has occurred. Since a single swarm is unable to differentiate between a
global optimum and a local optimum it cannot simply be extended to model natural
selection. One could “time-out” the optimization and restart the algorithm[4] or delete
information about the current global optimum in hopes that the swarm will not return
to it. Angeline[5] implemented a type of selection process. At the end of each swarm
update, the current fitnesses of the particles are used to order the particles. The top
half of the particles are then duplicated and replace the positions and velocities of the
bottom half of the particles. The personal bests of the particles are not changed. The
author is able to achieve better convergence on some test problems.

In search of a better model of natural selection using the PSO algorithm, we formu-
late what we call a Darwinian PSO, in which many swarms of test solutions may exist

at any time. Each swarm individually performs just like an ordinary PSO algorithm
with some rules governing the collection of swarms that are designed to simulate
natural selection. The selection process implemented is a selection of swarms within a
constantly changing collection of swarms.

2.a. Natural Selection in PSO

The basic assumptions made to implement Darwinian PSO are:

• The longer a swarm lives, the more chance it has of possessing offspring.
This is achieved by giving each swarm a constant, small chance of spawning
a new swarm.

• A swarm will have its life-time extended (be rewarded) by finding a more fit
state.

• A swarm will have its life-time reduced (be punished) for failing to find a
more fit state.

These simple ideas implement an algorithm imitating natural selection. In nature,
individuals or groups that possess a favorable adaptation are more likely to thrive and
procreate. The favorable adaptation is assumed to prolong the lifetime of the individ-
ual. Unfavorable adaptations shorten the lifespan of an individual or group.

The single swarm PSO algorithm possesses free parameters that can be adjusted to
optimize the algorithm to a specific problem. Extending the PSO algorithm to multi-
ple swarms will expand the parameter set and complicate the task of parameter selec-
tion. Particle birth and death within a swarm and swarm birth and death within the
collection of swarms must be characterized. Under what conditions should a new par-
ticle in a swarm be created? Should the swarm be fixed in size? When should a new
swarm be created? When should nature kill an existing swarm? All of these questions
introduce complexity into the possible number of implementations.

We will learn, if allowing multiple swarms to represent possible evolutionary
tracks of parallel implementations of PSO, whether or not selection, as analogous to
natural selection, can help to circumvent local optima.

2.b. Darwinian PSO—The Algorithm Details

2.b.i. Particle and swarm initialization
Each PSO particle is an array of numbers; the array could contain a binary
string[6]. The choice of the domain of the particle array elements,

N
ix as well as the

encoding of the test solution as an array of numbers is motivated by the particular op-
timization problem. The discussion of these details is therefore deferred until the test
problems are discussed. Each dimension of each particle is randomly initialized on an
appropriate range min maxix x x≤ ≤

maxv
. The velocities are also randomly initialized on a

range, , that allows particles to traverse a significant fraction of the min iv v≤ ≤

range of ix in a single iteration when moving at maxiv v= . Note that when a particle
is created, its velocity is randomized to encourage exploration. Each swarm is initial-
ized with a population of particles.

ma
cSC

2.b.ii. The Algorithm
At each step of the algorithm, labeled Main Program Loop in the pseudo code below,
the Evolve Swarm algorithm, also shown in the pseudo code below, operates on each
swarm. After evolving each swarm, each is allowed to spawn a new swarm with a
fixed probability as discussed in Section 2.b.v.. After spawning, the selection process
is executed. All swarms that are no longer progressing are deleted.

To evolve an individual swarm, the fitnesses of all of the particles in the swarm are
evaluated. The neighborhood and individual best positions of each of the particles are
updated. The swarm spawns a new particle if a new global best fitness is found. A
particle is deleted if the swarm has failed to find a more fit state in an allotted number
of steps. The details of how many steps are allowed before a particle is deleted is dis-
cussed in Section 2.b.v..

Main Program Loop (1 step)

For each swarm in the collection
 Evolve the swarm (Evolve
 Swarm Algorithm: right)
For each swarm in the collection
 Allow the swarm to spawn
Delete “failed” swarms

Evolve Swarm Algorithm

For each particle in the swarm

Update Particle Fitnesses
For each particle in the swarm

Update Particle Bests
For each particle in the swarm

Move Particle
If swarm gets better
 Reward swarm : spawn particle : extend
 swarm life
If swarm has not improved
 Punish swarm : possibly delete particle :
 reduce swarm life

2.b.iii. Condition for deleting a swarm
A swarm’s particle population, is bounded such that, m min maxm m m≤ ≤ . When a
swarm’s population falls below , the swarm is deleted. minm

2.b.iv. Condition for deleting a particle
The worst performing particle in the swarm is deleted using the following algorithm.
The number of times a swarm is evolved without finding an improved fitness is
tracked with a search counter, . If the swarm’s search counter exceeds a maximum
critical threshold, , a particle is deleted from the swarm. When a swarm is cre-
ated, its search counter is set at zero. When a particle is deleted, the swarm’s search
counter is reset not to zero but to a value approaching as the time during which
the swarm makes no improvement in fitness increases. The purpose of this reduction

SC
max
cSC

x

in tolerance for stagnation is to try to maintain a collection of swarms that are actively
improving. If is the number of particles deleted from the swarm over a period in
which there is no improvement in fitness, then the reset value of the search counter is
chosen to be

killN

 max 1() 1
1c kill c

kill

SC N SC
N

= − +

.

2.b.v. Condition for spawning particles and swarms
At each step of the algorithm, each swarm may spawn a new swarm. To be able to
spawn a new swarm, an existing swarm must have 0killN = . If this condition is met
and the maximum number of swarms will not be exceeded, the swarm spawns a new
swarm with probability / sp f N= , where f is a uniform random number on []0,1
and sN is the number of swarms. The purpose of the factor of 1/ sN is to suppress
swarm creation when there are large numbers of swarms in existence. When a swarm
spawns a new swarm, the spawning swarm (parent) is unaffected. To form the
spawned (child) swarm, half of the particles in the child are randomly selected from
the parent swarm and the other half are randomly selected from a random member of
the swarm collection (mate). The spawned or child swarm may inherit other attributes
from either parent or mate as necessary to design experimentation for the Darwinian
PSO algorithm. A particle is spawned whenever a swarm achieves a new global best
fitness.

3. Experiment to Test Selection as a Method for Circumventing
Local Optima

3.a. Adaptation for Selection

Selection allows the environment, or fitness landscape1, to cause swarms with good
adaptations to thrive and swarms with bad adaptations to die. To design a test of se-
lection, a swarm attribute on which to operate must be identified. How explosion of
the particle velocity[7] is controlled can have a dramatic impact on the performance
of the particle swarm[8]. A simple way to control the explosion of the particle veloc-
ity is to limit the velocity using a maximum velocity, v . If the particle velocity ex-
ceeds , then the particle velocity is set equal to v . Another approach to pre-
venting explosion is to modify the dynamical system defined by Eqn. 1, including a
constriction factor,

max

maxmaxv

χ , such that,

1 Fitness, fitness function, fitness landscape and environment are used interchangeably depend-
ing on context.

 ()1 2, ,(1) () () ()

(1) () (1)
i i i p i i n

i i i

v t v t x x x x

x t x t v t

χ φ φ+ = + − + −

+ = + +

i . (2)

Without constriction, the particles in the swarm can be made to stay ‘hot’, in the

sense that they are capable of moving large distances in the solution space in a single
step, with an appropriately selected v . This can be used to maximize the explora-
tion aspect built into PSO but may result in sub-optimal performance on fitness func-
tions where gradient following is an effective optimization strategy. In contrast, con-
striction works well on objective functions for which gradient following is effective.
The manner in which explosion control is handled, combined with an objective func-
tion, determines how well PSO will work. Our observations are that controlling the
particle velocity through will perform well on complicated landscapes and con-
striction will perform well on “well-behaved” landscapes. Therefore, the type of ve-
locity control that a swarm uses is chosen as the adaptation on which selection is to
act. The main reason for choosing particle velocity control as the adaptation on which
to operate is that it is easy to show that typically one method works better than the
other depending on the fitness function or environment.

max

maxv

3.b. Selection of Test Problems2

A set of test problems is selected with the goal of representing fitness landscapes
ranging from “well-behaved”, in which a global optimum can be found easily using
constriction for particle velocity control, to “ill-behaved”, in which works better
for finding the global optimum. Some of the functions are taken from the De Jong[9]
test functions. The set of test problems is presented in Table 2. For the Traveling
Salesman test problems, the cities are initialized either randomly or in a circular con-
figuration on an interval [-100,100] in . For Test Functions 1-5, the particle di-
mension and each dimension is randomly initialized on the interval [-10,10].
For the Traveling Salesman Problems, the particle dimension is twice the number of
cities, and each particle dimension is randomly initialized on the interval [-100,100].
The particle encodes each city as an (,

maxv

2

)

30N =

x y pair where all x values occupy the first
 dimensions and the values occupy the last dimensions. / 2N y / 2N

2 Test Problem and Test Function are used interchangeably.

Table 2 – The selected test functions. The subscript i here indexes the dimensionality of
the objective function and should not be confused with the previous use of index for index-
ing particles of a swarm. The Traveling Salesman Problem is abbreviated TSP

i

Function name Function definition
Test Function 1:
De Jong F1: Sphere

2

1
1

N

i
i

TF x
=

= ∑

Test Function 2:
De Jong F2 :
Rosenbrock[10]

() ()()1 2 22
1

1
2 100 1

N

i i i
i

x x x
−

+
=

= − +∑TF −

Test Function 3:
Giunta[11]

()() ()
()()

2

1

sin (16/15) i -1 sin (16/15) -1
3

(1/50)sin 40 (16/15) -1 (3/100)

N i i

i i

x x
TF

x=

 + =
+ +

∑

Test Function 4:
De Jong F4

4

1
4

N

i
i

TF x
=

= ∑

Test Function 5:
Rastrigin (){ }2

1
5 10cos 2

N

i i
i

TF x xπ
=

= − +∑ 10

Test Function 6:
TSP

Circular Configuration of 25 Cities

Test Function 7:
TSP

Circular Configuration of 50 Cities

Test Function 8:
TSP

Circular Configuration of 100 Cities

Test Function 9:
TSP

Random Configuration of 25 Cities

Test Function 10:
TSP

Random Configuration of 50 Cities

Test Function 11:
TSP

Random Configuration of 100 Cities

4. Results

4.a. Evaluating the Best Adaptation for Each Test Problem

Let us define type A velocity control as that using v and type B velocity control as
that using the constriction factor defined in Eqn. 2. Initially when a swarm is created
(not spawned), it is created as either a type A or B swarm. Once it is initialized as a
particular type, it remains that type. All particles within the swarm use the same type
of velocity control. In the multi-swarm Darwinian algorithm, if a swarm spawns a
new swarm, the new swarm inherits the spawning swarm’s velocity control type. Here

max

are the steps used to evaluate the best type of velocity control to use for each selected
problem.

1. Execute the Darwinian algorithm 15 times or trials on the test problem. Each

of the 15 executions is a full 5000 steps of the algorithm for all test problems
except the TSP problems which were allowed 10000 steps.

2. Compute the average number of swarms S< > , particles P< > and parti-
cles per swarm resulting from running the Darwinian
PSO on the test problems.

/PPS P S< >=< > < >

3. Execute a single swarm PSO on each test problem where the number of par-
ticles in the swarm is set to P< > and the neighborhood size is set to

. The purpose of this configuration is to make the single swarm as
much like the Darwinian swarms as possible in terms of the number of parti-
cles working on the problem and the average size of the neighborhood of a
particle. The single swarm algorithm is also executed 15 times. Each time,
the swarm has an equal probability of being initialized as either type A or
type B. The result will be that about 7 to 8 single swarm algorithms of each
type will be executed on each test problem.

PPS< >

4. Using the results of the single swarm executions, evaluate whether type A or
B velocity control is best for each particular test problem.

Table 3 – The single swarm executions allow categorization of the test functions stud-
ied into whether Type A or B velocity control yielded the best results. Type A velocity
control is velocity control. Type B velocity control uses constriction maxv

Function number Best Velocity Control Type
1 B
2 B
3 A
4 B
5 undetermined
6 A and B
7 A
8 A
9 A and B
10 A
11 A

Using the steps outlined above, the best type of velocity control for each test prob-

lem is evaluated. Table 3 summarizes the results of those experiments. The test func-
tions were selected to represent a set of functions for which the velocity control type
would impact the performance of the PSO algorithm. Clearly, the result was achieved
with three test functions that respond well to type B velocity control, five functions
that respond well to type A velocity control, two functions that respond well to either

type of velocity control and one undetermined. The undetermined result was due to a
shortcoming in the current implementation of the Darwinian PSO algorithm and is
discussed in Section 5.

Although our results are based upon 15 trial for each test function, we feel that the
consistent and compelling outcomes of those 15 trials over 11 test functions, totaling
more than 150 trials, is sufficient for supporting the conclusions of this current work.
We therefore leave expansion of the number of trials as important future work.

4.b. Evaluating Selection as a Mechanism for Adaptation of the PSO Algorithm

The primary focus of this work is to determine if the selection process can circumvent
local optima. To this end, a set of test functions is selected and it is shown that with-
out a prudent choice of velocity control, the PSO algorithm can converge to a local
optimum. This is graphically illustrated in Figure 1 where the results for Test Func-
tion 1 are shown. Note that a similar set of figures (not shown) results for each test
function evaluated. In the figure, the dot-dashed lines are the single swarm results. In
each case where the single swarm is initialized with type A velocity control, the algo-
rithm fails to progress. In contrast, the Darwinian algorithm never fails to progress
because in all 15 trials, the selection process selects type B swarms and is illustrated
in Figure 2.

When a single swarm is initialized, it has an equal probability of being initialized
as either type A or type B. Once its type is set, it does not change. This is evident
from Figure 2 where the single swarm (dot-dashed line) constriction fraction, defined
as the fraction of swarms using constriction (or type B) for velocity control, remains
constant, either 0 or 1, over the entire optimization for all 15 trials. Since multiple
swarms are initialized for the Darwinian algorithm, the fraction of type B swarms, or
constriction factor will be somewhere between 0 and 1. As the selection process oper-
ates, the fraction of type B swarms approaches 1. This is precisely the velocity con-
trol, of the two contrasting velocity control types considered, which works best on
Test Function 1.

The evidence supporting the conclusion that type B swarms work best is derived
from comparing Figures 1 and 2, trial by trial. If a single swarm trial (dot-dashed line)
in Figure 1 fails to progress, as indicated by a line approximately parallel to the hori-
zontal axis, the corresponding trial of Figure 2, will with 100% coincidence, indicate
that the single swarm is using type A velocity control. This supports a conclusion that
type A velocity control is bad for Test Problem 1.

The analyses presented in Figures 1 and 2 and discussed above are repeated for all
test functions considered. To quantify the ability of the selection process to help the
algorithm escape local optima, we define a measure of the probability that the selec-
tion process will help the algorithm escape local optima. To compute the measure,
the following steps are used.

1. For each trial, the Fitness vs. Objective Function Evaluation curves, like Fig-

ure 1, are examined to determine if the single swarm converges to a local op-
timum. This results in a set of trials { 1} { }set All trials⊂

Figure 1. Above is the fitness achieved on the Test Function 1 for 15 trials of both the
single swarm algorithm (dot-dashed line) and the Darwinian algorithm (solid line). The
fitness (lower is better) is plotted along the vertical axis and the horizontal axis is the
number of objective function evaluations

2. For those trials in which the single swarm converges to a local optimum,

the trials in which the single swarm used a velocity control other than the
best velocity control (refer to Table 3) are selected and result in a new set
of trials, { 2} { 1}set set⊂ .

3. Count the number of trials within 2set in which the Darwinian selection
evolved a set of swarms using the best velocity control type and in which
the Fitness vs. Objective Function Evaluation curves shows the Darwinian
swarms achieving significantly better fitness than the single swarm.

Figure 2. – The solid line is the fraction of the Darwinian swarms using type B (constric-

tion) velocity control. The dot-dashed line shows the single swarm type. Zero represents a
type A (velocity control) swarm and 1 represents a type B swarm. The 15 trials dis-
played are for the F1 test function. The horizontal axis is the number of objective function
evaluations

maxv

4. The probability measure is computed as the count of step 3 above divided

by the total number of elements in 2set .

The number of elements in 2set is 52 for our experiments. The number of those

trials in which the Darwinian selection algorithm converged to the preferred type of

velocity control is 47. Therefore the probability that the selection process helps to cir-
cumvent local optima is 47 / 52 0.9= .

p

Main Result: Probability that the Darwinian PSO Circumvents Local Optima = 0.9

5. Discussion

The main result of the paper is that Darwinian PSO helped circumvent local optima in
9/10ths of the selected trials. Since this work is preliminary and the algorithm adapted
only velocity control, it is our opinion that the result could be improved by expanding
the set of possible adaptations. For example, the results of Test Function 5 in Table 3
are undetermined because the Darwinian PSO algorithm failed to maintain a pool of
active swarms, shown in Figure 3. In the upper panel, the algorithm is seen to achieve
an on average steady state number of swarms throughout the trial. In the lower panel,
the Darwinian swarms simply peak and then die. It is possible that the Darwinian
swarms were not given ample time to search the fitness landscape. Since the number
of swarms in the population at any given instant is controlled by, in addition to the
fitness landscape, the parameter introduced in Section 2.b.vi., adaptation of the pa-
rameter would be beneficial. Other parameters that are candidates for adaptation
are:

p

• Initial particle count per swarm. We chose 20.
• Max particle count per swarm. We chose 300, which was sufficiently high to

allow swarms to evolve their population with essentially no upper bound on
the number of particles.

• Max spawn count: This is how many times a swarm is permitted to spawn.
We chose 10000 which essentially imposed no limit.

• Maximum number of swarms. We chose 10000 and the maximum number
was never approached.

• Condition for deleting a swarm. A swarm is deleted from the collection when
its particle population falls below a predefined minimum threshold. We
chose 10.

• The method of resetting the search counter , discussed in section 2.b.v.. SC
• The social and cognitive components of the particle motion, 1φ and 2φ of

Eqn. 1.
• The value of the maximum velocity . maxv
• The value of the constriction coefficient χ . We chose 0.78.
• Swarm interaction. We allow swarm interaction when a new swarm is

spawned. The parent swarm contributes half of its particle population to the
new swarm. A random member of the collection of swarms is selected to
contribute half of its particle population. Additional particles are randomly
initialized and added to the new swarm until it possesses the initial number
of particles allowed. For this paper the child always inherits the velocity con-
trol adaptation from the spawning parent.

A parameter that cannot be adapted but warrants study is the number of initial
swarms. We chose 20 for all trials. For other values that we pre-selected, the values
were chosen based on our experience with the PSO algorithm.

Figure 3. – The number of swarms vs. the number of objective function evaluations. The
solid line is the Darwinian algorithm. The dot-dashed line is a single swarm (number of
swarms=1). The top frame is a representative trial of Test Function 1 and the bottom panel is
a representative trial from Test Function 5

The reader may question the lack of typical performance measures of the PSO al-
gorithm[12] and comparisons with other PSO variants. We assert that since our goal
is to evolve a collection of swarms so that the resulting collection has an adaptation
that is optimized for the problem, a comparison to other PSO variants in terms of
convergence rate and solution quality would not be appropriate at this stage of the de-
velopment of the algorithm. It is notable that comparison of this algorithm with other
algorithms would necessarily be restricted to other multi-swarm algorithms because
the number of objective function evaluations is dramatically increased by the exis-
tence of many swarms at each step of the algorithm. It is this added overhead of
evaluating the fitness of poorly adapted swarms that allows the selection process to
operate and select an optimum adaptation. The use of a single swarm in this work to
determine the best type of velocity control for a specific problem should not be con-

fused with a comparison of the Darwinian PSO algorithm to a single swarm algo-
rithm.

Since the computing demands of this algorithm are higher than a pre-engineered
single swarm algorithm, a high-performance computing platform is desirable. The
Darwinian PSO algorithm can be parallelized at two levels. The individual swarms’
particles could be distributed across a cluster, which is beneficial when the fitness
computation is lengthy. Second, the swarms could be distributed as well. The high
computational demands of the algorithm motivated our choice for a lower number of
trials (15 per test function).

References

1. Eberhart, R.C. and J. Kennedy. A new optimizer using particle swarm theory. in

Proceedings of the Sixth International Symposium on Micro Machine and Human
Science. 1995. Nagoya, Japan.

2. Parsopoulos, K., et al., Improving the Particle Swarm Optimizer by Function
Stretching. Hadjisavvas N and Pardalos PM (eds) Advances in Convex Analysis
and Global Optimization, Kluwer Academic Publishers, 2001: p. 445–457.

3. Tawarmalani, M. and N.V. Sahinidis, Convexification and Global Optimization
in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms,
Software, and Applications. 2002: Kluwer Academic Publishers, Boston MA.

4. Clerc, M. The swarm and the queen: towards a deterministic and adaptive parti-
cle swarm optimization. in Congress on Evolutionary Computation. 1999. Wash-
ington, DC.

5. Angeline, P.J. Using Selection to Improve Particle Swarm Optimization. in IEEE
World Congress on Computational Intelligence. 1998. Anchorage, Alaska, USA.

6. Kennedy, J. and R.C. Eberhart. A discrete binary version of the particle swarm
algorithm. in Systems, Man, and Cybernetics. 1997. Piscataway, NJ: IEEE Ser-
vice Center.

7. Clerc, M. and J. Kennedy, The Particle Swarm-Explosion, Stability, and Conver-
gence in a Multidimensional and Complex Space. IEEE Transactions on Evolu-
tionary Computing, 2002. 6(1).

8. Parsopoulos, K.E. and M.N. Vrahatis, Recent approaches to global optimization
problems through Particle Swarm Optimization. Natural Computing, 2002. 1: p.
235-306.

9. De Jong, K.A., An analysis of the behavior of a class of genetic adaptive systems.
1975, Univ. of Michigan.

10. Rosenbrock, H.H., An automatic method for finding the greatest or least value of
a function. The Computer Journal, 1960. 3(175).

11. Giunta, A.A. and L.T. Watson, A Comparison of Approximation Modeling Tech-
niques: Polynomial versus Interpolating Models. AIAA, 1998. 98(4758).

12. Liang, J.J., et al., Evaluation of Comprehensive Learning Particle Swarm Opti-
mizer. Springer’s Lecture Notes in Computer Science, ICONIP’04, 2004. 3316:
p. 230-235.

