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Abstract. Particle Swarm Optimization (PSO), an evolutionary algorithm for 
optimization is extended to determine if natural selection, or survival-of-the-
fittest, can enhance the ability of the PSO algorithm to escape from local op-
tima. To simulate selection, many simultaneous, parallel PSO algorithms, each 
one a swarm, operate on a test problem. Simple rules are developed to imple-
ment selection. The ability of this so-called Darwinian PSO to escape local op-
tima is evaluated by comparing a single swarm and a similar set of swarms, dif-
fering primarily in the absence of the selection mechanism, operating on the 
same test problem. The selection process is shown to be capable of evolving the 
best type of particle velocity control, which is a problem specific design choice 
of the PSO algorithm. 

1. Particle Swarm Optimization (PSO) 

The PSO [1] approach utilizes a cooperative swarm of particles, where each particle 
represents a candidate solution, to explore the space of possible solutions to an opti-
mization problem. Each particle is randomly or heuristically initialized and then al-
lowed to ‘fly’. At each step of the optimization, each particle is allowed to evaluate its 
own fitness and the fitness of its neighboring particles. Each particle can keep track of 
its own solution, which resulted in the best fitness, as well as see the candidate solu-
tion for the best performing particle in its neighborhood. At each optimization step, 
indexed by  t , each particle, indexed by i , adjusts its candidate solution (flies) ac-
cording to, 
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Eqn. 1 may be interpreted as the ‘kinematic’ equation of motion for one of the par-

ticles (test solution) of the swarm. The variables in  the dynamical system of Eqn. 1 
are summarized in Table 1. 



Table 1- List of variables used to evaluate the dynamical swarm response 

iv  The particle velocity. 
ix  The particle position (test solution). 

t  Time 
1φ  A uniform random variable usually distributed over [0,2]. 

2φ  A uniform random variable usually distributed over [0,2]. 

,i px  The particle’s position (previous) that resulted in the best fit-
ness so far. 

,i nx  The neighborhood position that resulted in the best fitness so 
far. 

 
Eqn. 1 can be interpreted as follows. Particles combine information from their pre-

vious best position and their neighborhood best position to maximize the probability 
that they are moving toward a region of space that will result in a better fitness. The 
uniformly distributed random variables, 1φ  and 2φ  are sampled for each ,  and di-
mension of the vector 

i t

ix . 

2. Darwinian Particle Swarm Optimization  

A general problem with optimization algorithms is that of becoming trapped in a local 
optimum. A particular algorithm may work well on one problem but may fail on an-
other problem. If an algorithm could be designed to adapt to the fitness function, ad-
justing itself to the fitness landscape, a more robust algorithm with wider applicabil-
ity, without a need for problem specific engineering would result. Strategies for 
avoiding local optima include stretching of Parsopoulos[2] and other convexifica-
tion[3] strategies. Nature points to a way that may help circumvent local optima. We 
propose a strategy based on natural selection in which, when a search tends to a local 
optimum, the search in that area is simply discarded and another area is searched in-
stead. This is the type of search designed and analyzed in this paper.  

In a typical implementation of PSO, a single swarm of test solutions is utilized. To 
implement natural selection with a single swarm, the algorithm must detect when 
stagnation has occurred. Since a single swarm is unable to differentiate between a 
global optimum and a local optimum it cannot simply be extended to model natural 
selection. One could “time-out” the optimization and restart the algorithm[4] or delete 
information about the current global optimum in hopes that the swarm will not return 
to it. Angeline[5] implemented a type of selection process. At the end of each swarm 
update, the current fitnesses of the particles are used to order the particles. The top 
half of the particles are then duplicated and replace the positions and velocities of the 
bottom half of the particles. The personal bests of the particles are not changed. The 
author is able to achieve better convergence on some test problems. 

In search of a better model of natural selection using the PSO algorithm, we formu-
late what we call a Darwinian PSO, in which many swarms of test solutions may exist 



at any time. Each swarm individually performs just like an ordinary PSO algorithm 
with some rules governing the collection of swarms that are designed to simulate 
natural selection. The selection process implemented is a selection of swarms within a 
constantly changing collection of swarms. 

2.a. Natural Selection in PSO 

The basic assumptions made to implement Darwinian PSO are: 
 

• The longer a swarm lives, the more chance it has of possessing offspring. 
This is achieved by giving each swarm a constant, small chance of spawning 
a new swarm.  

• A swarm will have its life-time extended (be rewarded) by finding a more fit 
state.  

• A swarm will have its life-time reduced (be punished) for failing to find a 
more fit state.  

These simple ideas implement an algorithm imitating natural selection. In nature, 
individuals or groups that possess a favorable adaptation are more likely to thrive and 
procreate. The favorable adaptation is assumed to prolong the lifetime of the individ-
ual. Unfavorable adaptations shorten the lifespan of an individual or group. 

The single swarm PSO algorithm possesses free parameters that can be adjusted to 
optimize the algorithm to a specific problem. Extending the PSO algorithm to multi-
ple swarms will expand the parameter set and complicate the task of parameter selec-
tion. Particle birth and death within a swarm and swarm birth and death within the 
collection of swarms must be characterized. Under what conditions should a new par-
ticle in a swarm be created? Should the swarm be fixed in size? When should a new 
swarm be created? When should nature kill an existing swarm? All of these questions 
introduce complexity into the possible number of implementations.  

We will learn, if allowing multiple swarms to represent possible evolutionary 
tracks of parallel implementations of PSO, whether or not selection, as analogous to 
natural selection, can help to circumvent local optima.  

2.b. Darwinian PSO—The Algorithm Details 

2.b.i. Particle and swarm initialization  
Each PSO particle is an array of  numbers; the array could contain a binary 
string[6]. The choice of the domain of the particle array elements, 

N
ix  as well as the 

encoding of the test solution as an array of numbers is motivated by the particular op-
timization problem. The discussion of these details is therefore deferred until the test 
problems are discussed. Each dimension of each particle is randomly initialized on an 
appropriate range min maxix x x≤ ≤

maxv
. The velocities are also randomly initialized on a 

range, , that allows particles to traverse a significant fraction of the min iv v≤ ≤



range of ix  in a single iteration when moving at maxiv v= . Note that when a particle 
is created, its velocity is randomized to encourage exploration. Each swarm is initial-
ized with a population of particles.  

ma
cSC

2.b.ii. The Algorithm 
At each step of the algorithm, labeled Main Program Loop in the pseudo code below, 
the Evolve Swarm algorithm, also shown in the pseudo code below, operates on each 
swarm. After evolving each swarm, each is allowed to spawn a new swarm with a 
fixed probability as discussed in Section 2.b.v.. After spawning, the selection process 
is executed. All swarms that are no longer progressing are deleted. 

To evolve an individual swarm, the fitnesses of all of the particles in the swarm are 
evaluated. The neighborhood and individual best positions of each of the particles are 
updated. The swarm spawns a new particle if a new global best fitness is found. A 
particle is deleted if the swarm has failed to find a more fit state in an allotted number 
of steps. The details of how many steps are allowed before a particle is deleted is dis-
cussed in Section 2.b.v.. 

 
Main Program Loop  (1 step) 
 
For each swarm in the collection 
        Evolve the swarm (Evolve  
        Swarm Algorithm: right) 
For each swarm in the collection 
        Allow the swarm to spawn 
Delete “failed” swarms 
 

Evolve Swarm Algorithm 
 
For each particle in the swarm 

Update Particle Fitnesses 
For each particle in the swarm 

Update Particle Bests 
For each particle in the swarm 

Move Particle 
If swarm gets better 
 Reward swarm : spawn particle : extend    
           swarm life 
If swarm has not improved 
 Punish swarm : possibly delete particle :  
           reduce swarm life 

 

2.b.iii. Condition for deleting a swarm 
A swarm’s particle population,  is bounded such that, m min maxm m m≤ ≤ . When a 
swarm’s population falls below , the swarm is deleted. minm

2.b.iv. Condition for deleting a particle 
The worst performing particle in the swarm is deleted using the following algorithm. 
The number of  times a swarm is evolved without finding an improved fitness is 
tracked with a search counter, . If the swarm’s search counter exceeds a maximum 
critical threshold, , a particle is deleted from the swarm. When a swarm is cre-
ated, its search counter is set at zero. When a particle is deleted, the swarm’s search 
counter is reset not to zero but to a value approaching  as the time during which 
the swarm makes no improvement in fitness increases. The purpose of this reduction 
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in tolerance for stagnation is to try to maintain a collection of swarms that are actively 
improving. If   is the number of particles deleted from the swarm over a period in 
which there is no improvement in fitness, then the reset value of the search counter is 
chosen to be 

killN
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2.b.v. Condition for spawning particles and swarms 
At each step of the algorithm, each swarm may spawn a new swarm. To be able to 
spawn a new swarm, an existing swarm must have 0killN = . If this condition is met 
and the maximum number of swarms will not be exceeded, the swarm spawns a new 
swarm with probability / sp f N= , where  f  is a uniform random number on [ ]0,1  
and sN  is the number of swarms.  The purpose of the factor of  1/ sN  is to suppress 
swarm creation when there are large numbers of swarms in existence. When a swarm 
spawns a new swarm, the spawning swarm (parent) is unaffected. To form the 
spawned (child) swarm, half of the particles in the child are randomly selected from 
the parent swarm and the other half are randomly selected from a random member of 
the swarm collection (mate). The spawned or child swarm may inherit other attributes 
from either parent or mate as necessary to design experimentation for the Darwinian 
PSO algorithm. A particle is spawned whenever a swarm achieves a new global best 
fitness. 

3. Experiment to Test Selection as a Method for Circumventing 
Local Optima 

3.a. Adaptation for Selection 

Selection allows the environment, or fitness landscape1, to cause swarms with good 
adaptations to thrive and swarms with bad adaptations to die. To design a test of se-
lection, a swarm attribute on which to operate must be identified. How explosion of 
the particle velocity[7] is controlled can have a dramatic impact on the performance 
of the particle swarm[8]. A simple way to control the explosion of the particle veloc-
ity is to limit the velocity using a maximum velocity, v . If the particle velocity ex-
ceeds , then the particle velocity is set equal to v . Another approach to pre-
venting explosion is to modify the dynamical system defined by Eqn. 1, including a 
constriction factor, 

max

maxmaxv

χ , such that, 

                                                           

1 Fitness, fitness function, fitness landscape and environment are used interchangeably depend-
ing on context. 
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Without constriction, the particles in the swarm can be made to stay ‘hot’, in the 

sense that they are capable of moving large distances in the solution space in a single 
step, with an appropriately selected v . This can be used to maximize the explora-
tion aspect built into PSO but may result in sub-optimal performance on fitness func-
tions where gradient following is an effective optimization strategy. In contrast, con-
striction works well on objective functions for which gradient following is effective. 
The manner in which explosion control is handled, combined with an objective func-
tion, determines how well PSO will work. Our observations are that controlling the 
particle velocity through  will perform well on complicated landscapes and con-
striction will perform well on “well-behaved” landscapes. Therefore, the type of ve-
locity control that a swarm uses is chosen as the adaptation on which selection is to 
act. The main reason for choosing particle velocity control as the adaptation on which 
to operate is that it is easy to show that typically one method works better than the 
other depending on the fitness function or environment. 

max

maxv

3.b. Selection of Test Problems2 

A set of test problems is selected with the goal of representing fitness landscapes 
ranging from “well-behaved”, in which a global optimum can be found easily using 
constriction for particle velocity control, to “ill-behaved”, in which  works better 
for finding the global optimum. Some of the functions are taken from the De Jong[9] 
test functions. The set of test problems is presented in Table 2. For the Traveling 
Salesman test problems, the cities are initialized either randomly or in a circular con-
figuration on an interval [-100,100] in . For Test Functions 1-5, the particle di-
mension  and each dimension is randomly initialized on the interval [-10,10]. 
For the Traveling Salesman Problems, the particle dimension is twice the number of 
cities, and each particle dimension is randomly initialized on the interval [-100,100]. 
The particle encodes each city as an ( ,

maxv

2

)

30N =

x y  pair where all x  values occupy the first 
 dimensions and the  values occupy the last  dimensions. / 2N y / 2N

                                                           

2 Test Problem and Test Function are used interchangeably. 



Table 2 – The selected test functions. The subscript i  here indexes the dimensionality of 
the objective function and should not be confused with the previous use of index  for index-
ing particles of a swarm. The Traveling Salesman Problem is abbreviated TSP 
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Function name Function definition 
Test Function 1: 
De Jong F1: Sphere 
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Test Function 2: 
De Jong F2 : 
Rosenbrock[10] 
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Test Function 3: 
Giunta[11] 
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Test Function 4: 
De Jong F4 
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Test Function 6: 
TSP 

Circular Configuration of 25 Cities 

Test Function 7: 
TSP 

Circular Configuration of 50 Cities 

Test Function 8: 
TSP 

Circular Configuration of 100 Cities 

Test Function 9: 
TSP 

Random Configuration of 25 Cities 

Test Function 10: 
TSP 

Random Configuration of 50 Cities 

Test Function 11: 
TSP 

Random Configuration of 100 Cities 

4. Results 

4.a. Evaluating the Best Adaptation for Each Test Problem 

Let us define type A velocity control as that using  v  and type B velocity control as 
that using the constriction factor defined in Eqn. 2. Initially when a swarm is created 
(not spawned), it is created as either a type A or B swarm. Once it is initialized as a 
particular type, it remains that type. All particles within the swarm use the same type 
of velocity control. In the multi-swarm Darwinian algorithm, if a swarm spawns a 
new swarm, the new swarm inherits the spawning swarm’s velocity control type. Here 

max



are the steps used to evaluate the best type of velocity control to use for each selected 
problem. 

 
1. Execute the Darwinian algorithm 15 times or trials on the test problem. Each 

of the 15 executions is a full 5000 steps of the algorithm for all test problems 
except the TSP problems which were allowed 10000 steps.  

2. Compute the average number of swarms S< > , particles P< >  and parti-
cles per swarm resulting from running the Darwinian 
PSO on the test problems. 

/PPS P S< >=< > < >

3. Execute a single swarm PSO on each test problem where the number of par-
ticles in the swarm is set to P< >  and the neighborhood size is set to 

. The purpose of this configuration is to make the single swarm as 
much like the Darwinian swarms as possible in terms of the number of parti-
cles working on the problem and the average size of the neighborhood of a 
particle. The single swarm algorithm is also executed 15 times. Each time, 
the swarm has an equal probability of being initialized as either type A or 
type B. The result will be that about 7 to 8 single swarm algorithms of each 
type will be executed on each test problem. 

PPS< >

4. Using the results of the single swarm executions, evaluate whether type A or 
B velocity control is best for each particular test problem. 

 

Table 3 – The single swarm executions allow categorization of the test functions stud-
ied into whether Type A or B velocity control yielded the best results. Type A velocity
control is  velocity control. Type B velocity control uses constriction maxv

Function number Best Velocity Control Type 
1 B 
2 B 
3 A 
4 B 
5 undetermined 
6 A and B 
7 A 
8 A 
9 A and B 
10 A 
11 A 

 
Using the steps outlined above, the best type of velocity control for each test prob-

lem is evaluated.  Table 3 summarizes the results of those experiments. The test func-
tions were selected to represent a set of functions for which the velocity control type 
would impact the performance of the PSO algorithm. Clearly, the result was achieved 
with three test functions that respond well to type B velocity control, five functions 
that respond well to type A velocity control, two functions that respond well to either 



type of velocity control and one undetermined. The undetermined result was due to a 
shortcoming in the current implementation of the Darwinian PSO algorithm and is 
discussed in Section 5. 

Although our results are based upon 15 trial for each test function, we feel that the 
consistent and compelling outcomes of those 15 trials over 11 test functions, totaling 
more than 150 trials, is sufficient for supporting the conclusions of this current work. 
We therefore leave expansion of the number of trials as important future work. 

4.b. Evaluating Selection as a Mechanism for Adaptation of the PSO Algorithm 

The primary focus of this work is to determine if the selection process can circumvent 
local optima. To this end, a set of test functions is selected and it is shown that with-
out a prudent choice of velocity control, the PSO algorithm can converge to a local 
optimum. This is graphically illustrated in Figure 1 where the results for Test Func-
tion 1 are shown. Note that a similar set of figures (not shown) results for each test 
function evaluated. In the figure, the dot-dashed lines are the single swarm results. In 
each case where the single swarm is initialized with type A velocity control, the algo-
rithm fails to progress. In contrast, the Darwinian algorithm never fails to progress 
because in all 15 trials, the selection process selects type B swarms and is illustrated 
in Figure 2. 

When a single swarm is initialized, it has an equal probability of being initialized 
as either type A or type B. Once its type is set, it does not change. This is evident 
from Figure 2 where the single swarm (dot-dashed line) constriction fraction, defined 
as the fraction of swarms using constriction (or type B) for velocity control, remains 
constant, either 0 or 1, over the entire optimization for all 15 trials. Since multiple 
swarms are initialized for the Darwinian algorithm, the fraction of type B swarms, or 
constriction factor will be somewhere between 0 and 1. As the selection process oper-
ates, the fraction of type B swarms approaches 1. This is precisely the velocity con-
trol, of the two contrasting velocity control types considered, which works best on 
Test Function 1. 

The evidence supporting the conclusion that type B swarms work best is derived 
from comparing Figures 1 and 2, trial by trial. If a single swarm trial (dot-dashed line) 
in Figure 1 fails to progress, as indicated by a line approximately parallel to the hori-
zontal axis, the corresponding trial of Figure 2, will with 100% coincidence, indicate 
that the single swarm is using type A velocity control. This supports a conclusion that 
type A velocity control is bad for Test Problem 1. 

The analyses presented in Figures 1 and 2 and discussed above are repeated for all 
test functions considered. To quantify the ability of the selection process to help the 
algorithm escape local optima, we define a measure of the probability that the selec-
tion process will help the algorithm escape local optima.  To compute the measure, 
the following steps are used. 

 
1. For each trial, the Fitness vs. Objective Function Evaluation curves, like Fig-

ure 1, are examined to determine if the single swarm converges to a local op-
timum. This results in a set of trials { 1} { }set All trials⊂  



 
Figure 1.  Above is the fitness achieved on the Test Function 1 for 15 trials of both the 
single swarm algorithm (dot-dashed line) and the Darwinian algorithm (solid line). The 
fitness (lower is better) is plotted along the vertical axis and the horizontal axis is the 
number of objective function evaluations 

 
2. For those trials in which the single swarm converges to a local optimum, 

the trials in which the single swarm used a velocity control other than the 
best velocity control (refer to Table 3) are selected and result in a new set 
of trials, { 2} { 1}set set⊂ . 

3. Count the number of trials within 2set  in which the Darwinian selection 
evolved a set of swarms using the best velocity control type and in which 
the Fitness vs. Objective Function Evaluation curves shows the Darwinian 
swarms achieving significantly better fitness than the single swarm. 

 



 
Figure 2. – The solid line is the fraction of the Darwinian swarms using type B (constric-

tion) velocity control. The dot-dashed line shows the single swarm type.  Zero represents a 
type A (  velocity control) swarm and 1 represents a type B swarm. The 15 trials dis-
played are for the F1 test function. The horizontal axis is the number of objective function 
evaluations 

maxv

 
4. The probability measure is computed as the count of step 3 above divided 

by the total number of elements in 2set . 
 
The number of elements in 2set  is 52 for our experiments. The number of those 

trials in which the Darwinian selection algorithm converged to the preferred type of 



velocity control is 47. Therefore the probability that the selection process helps to cir-
cumvent local optima is 47 / 52 0.9= . 

p

 
Main Result: Probability that the Darwinian PSO Circumvents Local Optima = 0.9 

5. Discussion 

The main result of the paper is that Darwinian PSO helped circumvent local optima in 
9/10ths of the selected trials. Since this work is preliminary and the algorithm adapted 
only velocity control, it is our opinion that the result could be improved by expanding 
the set of possible adaptations. For example, the results of Test Function 5 in Table 3 
are undetermined because the Darwinian PSO algorithm failed to maintain a pool of 
active swarms, shown in Figure 3. In the upper panel, the algorithm is seen to achieve 
an on average steady state number of swarms throughout the trial. In the lower panel, 
the Darwinian swarms simply peak and then die. It is possible that the Darwinian 
swarms were not given ample time to search the fitness landscape. Since the number 
of swarms in the population at any given instant is controlled by, in addition to the 
fitness landscape, the parameter  introduced in Section 2.b.vi., adaptation of the pa-
rameter  would be beneficial. Other parameters that are candidates for adaptation 
are: 

p

 

• Initial particle count per swarm. We chose 20. 
• Max particle count per swarm. We chose 300, which was sufficiently high to 

allow swarms to evolve their population with essentially no upper bound on 
the number of particles. 

• Max spawn count: This is how many times a swarm is permitted to spawn. 
We chose 10000 which essentially imposed no limit. 

• Maximum number of swarms. We chose 10000 and the maximum number 
was never approached. 

• Condition for deleting a swarm. A swarm is deleted from the collection when 
its particle population falls below a predefined minimum threshold. We 
chose 10. 

• The method of resetting the search counter , discussed in section 2.b.v.. SC
• The social and cognitive components of the particle motion, 1φ  and 2φ  of 

Eqn. 1. 
• The value of the maximum velocity . maxv
• The value of the constriction coefficient χ . We chose 0.78. 
• Swarm interaction. We allow swarm interaction when a new swarm is 

spawned. The parent swarm contributes half of its particle population to the 
new swarm. A random member of the collection of swarms is selected to 
contribute half of its particle population. Additional particles are randomly 
initialized and added to the new swarm until it possesses the initial number 
of particles allowed. For this paper the child always inherits the velocity con-
trol adaptation from the spawning parent. 



A parameter that cannot be adapted but warrants study is the number of initial 
swarms. We chose 20 for all trials. For other values that we pre-selected, the values 
were chosen based on our experience with the PSO algorithm. 

 

 

Figure 3. – The number of swarms vs. the number of objective function evaluations. The 
solid line is the Darwinian algorithm. The dot-dashed line is a single swarm (number of 
swarms=1). The top frame is a representative trial of Test Function 1 and the bottom panel is 
a representative trial from Test Function 5 

 

The reader may question the lack of typical performance measures of the PSO al-
gorithm[12] and comparisons with other PSO variants. We assert that since our goal 
is to evolve a collection of swarms so that the resulting collection has an adaptation 
that is optimized for the problem, a comparison to other PSO variants in terms of 
convergence rate and solution quality would not be appropriate at this stage of the de-
velopment of the algorithm. It is notable that comparison of this algorithm with other 
algorithms would necessarily be restricted to other multi-swarm algorithms because 
the number of objective function evaluations is dramatically increased by the exis-
tence of many swarms at each step of the algorithm. It is this added overhead of 
evaluating the fitness of poorly adapted swarms that allows the selection process to 
operate and select an optimum adaptation. The use of a single swarm in this work to 
determine the best type of velocity control for a specific problem should not be con-



fused with a comparison of the Darwinian PSO algorithm to a single swarm algo-
rithm. 

Since the computing demands of this algorithm are higher than a pre-engineered 
single swarm algorithm, a high-performance computing platform is desirable. The 
Darwinian PSO algorithm can be parallelized at two levels. The individual swarms’ 
particles could be distributed across a cluster, which is beneficial when the fitness 
computation is lengthy. Second, the swarms could be distributed as well. The high 
computational demands of the algorithm motivated our choice for a lower number of 
trials (15 per test function). 
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